
Team No: 5
Members:

● Joshua Oertel j583o901@ku.edu
● Thomas Brooks t090b057@ku.edu
● Chong Tan chong.tan@ku.edu
● Lu Yin lu.yin@ku.edu

Project Name: Seathereum

Synopsis:

Use the Ethereum blockchain to build a decentralized app (DApp) that behaves
like a Tamagotchi collectible game with various features designed to promote
interactivity.

Description:

With the popularity of DApps such as Cryptokitties, there has been an increase in
curiosity for the capabilities and implications of DApps. We have decided to undertake
the development of an application that incorporates this innovative technology. The
potential for DApp products is not fully recognized by the general public and the market
is minimal, yet full decentralization can provide many benefits over alternatives that
operate within a centralized network. These benefits will be explored throughout the
development of our DApp.

Our DApp can be categorized as entertainment. It will essentially be a virtual
collectible game that implements the ERC-721 standard which details how to create
non-fungible, unique tokens on the Ethereum blockchain. We have chosen to use the
Ethereum blockchain over alternatives because its Virtual Machine is Turing-complete
granting full control over how the application behaves when it is deployed.

We’re developing a DApp which aims to demonstrate the potential of blockchain
technology and that offers a simpler introduction for individuals who are less familiar
with the concepts surrounding blockchain. The DApp will explore how, unlike similar
applications, focusing on interactivity can leverage a more enjoyable experience for the
consumer. We hope to gain insight into the process and concern for the overall
effectiveness of utilizing blockchain technology in a public, consumer application.

Milestones:

Initial Project Deployment - October 26th, 2018

Initial Interaction Between Frontend and Network Completed - November 9th, 2018

Smart Contract Token Attributes Initialized - November 30th, 2018.

Smart Contracts Completed- March 1st, 2019

Finish 1st Game for our Website - March 8th, 2019

Website Completed - April 12th, 2019

Budget:

Part of the advantage of utilizing the blockchain for much of the storage is that
costs will be minimized substantially. The blockchain will host most of the data towards
our tokenable Tamagotchi-esque creatures, The web application will be responsible for
serving the web assets such as images to the consumer. The blockchain will only
record the necessary information about transactions that has occured between users of
a DApp. We have favored using technologies and frameworks that advocate
open-source and decentralization because of the minimal cost. Examples include:

● The Truffle Suite and the many technologies it borrows from
https://truffleframework.com/

● Github: https://github.com/joshwashywash/Seathereum
● Node.js and various web development packages
● React https://reactjs.org/
● Bootstrap https://getbootstrap.com/

Other resources may be incorporated into the project to overcome any unforeseen
obstacles.

One cost that we may encounter is a VPS or proper server (Prices may vary between
plans) to host our application specific environment. Some services like Heroku may be
able to sufficiently serve our application, however, at this time, we are unsure of the
specifics. This is because we may choose to go with a private blockchain just to get the
idea established for our project, rather than make it public.

Work Plan:

We have planned to divide the work according to team members’ interest. The
chart below indicates major components of the project and which teammate has
expressed interest in that task. Each aspect of the project will be open to everyone,

https://truffleframework.com/
https://github.com/joshwashywash/Seathereum
https://reactjs.org/
https://getbootstrap.com/

however, teammates that have an affinity for a specific task will naturally focus more of
their attention towards the design, development, and implementation of this particular
task.

Task
Joshua
Oertel

Thomas
Brooks

Chong
Tan Lu Yin

Solidity and Ethereum
Development X X X

Backend Work X X

Frontend Site Work X X X

Documentation and
Testing X X

Gantt Chart:
A link to a higher resolution image of the gantt chart is provided below:

https://drive.google.com/file/d/1vJwz-D2fBpPda5nKUL4PoEwlj2MM2B6U/view?usp=sharing

https://drive.google.com/file/d/1vJwz-D2fBpPda5nKUL4PoEwlj2MM2B6U/view?usp=sharing

Final Project Design:
From the client perspective, the DApp will work in the following manner: users

will purchase a creature either from another player or by a direct offer from the
developers. After acquiring a creature, the user has a variety of different actions that
can be performed. The actions can be split into two categories. Some actions involve
basic interaction with their creature in the style of a virtual pet game. These activities do
not adjust or manipulate the creature nor require any blockchain interaction. These
actions offer a more casual and relaxing experience to the user during the downtime of
trying to make a profit or engaging in the second category. The second category
involves actions which require blockchain communication. As mentioned, players will
have the option to sell and trade the creatures they acquire, and will be able to influence
the prices and creature market. Certain creatures will be more favorable than others
due to certain traits and features not found on other creatures. These rarities and
attributes will drive the market and facilitate user to user interaction through the
blockchain contracts that will be developed in tandem with the application.

Use Case Diagram

Our application is going to be reliant on the blockchain for delivering the
appropriate content to each user. As a consequence, certain prerequisites need to be
fulfilled in order to properly interact with our app. The most immediate requirement for
new user would be the use of a DApp viewer. Certain applications such as Mist or
MetaMask provide this functionality. Just like how a browser is used to view and
interpret web pages, DApp viewers function in a similar way. While there are not that
many well-maintained or documented DApp viewers, those that exist come in multiple

different fashions. The popular DApp viewer, MetaMask, operates as an extension to
currently existing web browsers, thus providing an easy installation and integration.
Certain parts of the application would be open for all users, while other parts would be
only accessible to users employing a DApp viewer.

By design, the DApp can be divided into three different portions. There is a the
smart contract, which interacts with the Ethereum blockchain to handle transactions and
dictates the components of each token. Unlike traditional cryptocurrencies, even
Ethereum itself, Seathereum will feature tokens based on the ERC-721 standard. Each
token will be indivisible, unique, and unstackable in the way other coins are. The second
component is the back-end of the application, which will feature mostly JavaScript
utilities. This will be responsible for intercepting the transactions made by the smart
contract, and provide the logic to the application. This could include things such as
interpreting the components of each token, and the game logic for the interactions
hosted on the website. Finally, there is the front-end of the application, which will feature
the standard HTML, CSS, and JavaScript found on most web applications. This is for
displaying the contents in the typical web page format. The JavaScript implementation
for HTML requests to blockchain nodes has gained the most support out of any of the
available APIs offered by the Ethereum Foundation for interacting with smart contracts

Package Diagram

Component Diagram

The smart contract will be developed primarily with the help of the Truffle
framework. This framework offers multiple components that are useful for the
development of the contract. The main component, Truffle, is specifically designed to
aid in the development and deployment of a contract onto a blockchain. One nice
feature of Truffle is that the component also does not add any additional syntax from the
contract in order to use it, as this would not be possible on the blockchain without
importing its libraries, and in effect, adding more gas fees to the transactions of the
users. Truffle is specifically tied to experiences around development, such as testing,
migrations, and deployment. Some workflows have to be established in order to
properly work with Truffle, but none are related to the actual writing of the contract.
Another component of the framework is Ganache. Ganache is used for spinning up a
temporary blockchain with ether on several accounts to test the transactions on this
blockchain without having to pay real monetary fees. One advantage of using Ganache
is that it is the only component of the framework that is reliant upon any other
component. Drizzle is the final component and is for monitoring the transactions on the
JavaScript portion of the program so that the DApp can properly handle changes made
on the blockchain. Drizzle utilizes a state management system similar to a redux store.

Deployment will be achieved through the Heroku cloud platform. Heroku offers
easy deployment and configuration from a git repo, and can follow a branch to commit
changes as soon as the branch is updated and pushed. The simple configuration makes
Heroku ideal for a team that has little to no experience. Should we also need additional

requirements for our application, we also have the ability to scale into paid solutions,
without changing the deployment model.

The front-end will be designed using React components, which ties well into
Drizzle from the Truffle framework mentioned previously. Drizzle will monitor changes
on the blockchain which affect our application, and React provides a way to propagate
these changes to the rest of the UI components. These components are only updated
when necessary. Routing the different web-pages will be handled through the react
router. The react router can render a variety of use cases, from react components, to
simple html pages. This structure handles more than enough use cases for our needs,
doing what a normal backend like Express or Koa would do, but for a smaller scale.
Styling will be supported by the popular Bootstrap framework. Bootstrap has been
chosen for its ease of use and integration allowing us to focus on more pertinent
aspects of the application rather than the visuals. Bootstrap can natively handle
adapting to different screen sizes to display web pages to fit more fluidly on a range of
different devices. This ability adds a level of responsiveness to the UI.

Ethical Concerns:

In effect, our app will be creating a virtual market where digital goods with real
monetary value will be bought, sold, and traded. With this consideration in mind, there is
a strong necessity for the application to adhere to ethical norms. Fortunately, user
account security is not a major concern due to the design of blockchain. Tokens are
connected to each user’s Ethereum wallet instead of a database. This means that the
application is not responsible for storing any user information. This is the same method
that other DApps have inherited. The balance of each user’s wallet is also stored on the
blockchain. Our app will only be responsible for matching the proper tokens to their
proper owners. All transactions will be posted on the blockchain providing a
self-enforcing sense of security for users’ tokens.

There are, however, other concerns that blockchain apps must face that other
apps do not have to deal with. In order to write to the blockchain, a monetary fee is used
to compensate the nodes on the blockchain that perform the computations, and hold the
data. These are passed to the wallets making the transactions, meaning our users will
incur some consistent fees just for interacting with our app. These fees depend on the
amount of computations and data being written to the blockchain, thus we will have to
be extremely careful in ensuring we only write to the blockchain when it is absolutely
necessary in order to reduce costs.

With the unique value generation of Ethereum and other cryptocurrencies, our
users will determine the value of each unique token. However, we are in charge of the
actual token attributes. This means that any changes that we could make to the

software when we have a user base could affect not only the value of future tokens, but
existing tokens that our users might already have. This could be both in their favor, and
against it. This needs to be either addressed to the user base as a possibility, or the
software can not be updated outside of security issues.

Intellectual Property Issues:

With the chosen license of the BSD-3 Clause License, we will need to keep in
mind that not all libraries or solutions that we could use will be accommodate for this
license. For example, the GPL v3 does not allow its software to be sublicensed in any
form, thus we will have to be careful what libraries we use. The LGPL v3 and 2.1 allow
for some sublicensing within proprietary programs, but because our application is going
to be open source, it most likely will not be a problem. Our current selection of software
does allow for sub-licensing.

Change Log:

● The Work Plan was changed to reflect only having four members now.
● The Gantt chart was changed to reflect what actually occurred last semester, and to

what is intended for this semester. It also reflects only having four members now.
● The budget had some technologies removed that no longer apply, as well as one

potential cost removed as well.
● The Project Design removed some features that are no longer possible due to time

constraints, and to reemphasize the amount of Koa we use as well, by not mentioning it.
This is because it is only being used in one file, which is not as much as we anticipated,
yet it is still covered by the budget in broad terms. The diagrams were also changed to
reflect this as well.

● More milestones were included. Also, in order to meet the requirement of three each
semester, and one was forgotten from last semester, one goal had to be expressed that
was achieved unintentionally.

